Slowing of sodium channel opening kinetics in squid axon by extracellular zinc
نویسندگان
چکیده
The interaction of Zn ion on Na channels was studied in squid giant axons. At a concentration of 30 mM Zn2+ slows opening kinetics of Na channels with almost no alteration of closing kinetics. The effects of Zn2+ can be expressed as a "shift" of the gating parameters along the voltage axis, i.e., the amount of additional depolarization required to overcome the Zn2+ effect. In these terms the mean shifts caused by 30 mM Zn2+ were +29.5 mV for Na channel opening (on) kinetics (t1/2 on), +2 mV for closing (off) kinetics (tau off), and +8.4 mV for the gNa-V curve. Zn2+ does not change the shape of the instantaneous I-V curve for inward current, but reduces it in amplitude by a factor of or approximately 0.67. Outward current is unaffected. Effects of Zn2+ on gating current (measured in the absence of TTX) closely parallel its actions on gNa. On gating current kinetics are shifted by +27.5 mV, off kinetics by +6 mV, and the Q-V distribution by +6.5 mV. Kinetic modeling shows that Zn2+ slows the forward rate constants in activation without affecting backward rate constants. More than one of the several steps in activation must be affected. The results are not compatible with the usual simple theory of uniform fixed surface charge. They suggest instead that Zn2+ is attracted by a negatively charged element of the gating apparatus that is present at the outer membrane surface at rest, and migrates inward on activation.
منابع مشابه
Interaction of internal anions with potassium channels of the squid giant axon
The interaction of internal anions with the delayed rectifier potassium channel was studied in perfused squid axons. Changing the internal potassium salt from K+ glutamate- to KF produced a reversible decline of outward K currents and a marked slowing of the activation of K channels at all voltages. Fluoride ions exert a differential effect upon K channel gating kinetics whereby activation of I...
متن کاملSodium and gating current time shifts resulting from changes in initial conditions
The sodium and gating currents of the squid giant axon elicited by a depolarizing pulse are delayed, with little change in shape, as a result of a hyperpolarizing prepulse. The delays are almost completely saturated, at approximately 45 microseconds, for prepulses to -140 mV. At 8 degrees C they develop with time constants of between 60 and 180 microseconds for prepulses in the -130- to -150-mV...
متن کاملThe dual role of calcium: pore blocker and modulator of gating.
Faced with the bewildering characteristics of the ionic currents that cause the action potential in squid axon, Hodgkin and Huxley in 1952 developed an elegant model (1) that remains one of the most insightful descriptions of the functional properties of voltage-gated ion channels. One ingredient in this conceptual wizardry was the strict separation between gating, the process responsible for a...
متن کاملRemoval of sodium channel inactivation in squid axon by the oxidant chloramine-T
We have investigated the effects of a mild oxidant, chloramine-T(CT), on the sodium and potassium currents of squid axons under voltage-clamp conditions. Sodium channel inactivation of squid giant axons can be completely removed by CT at neutral pH. Internal and external CT treatment are both effective. CT apparently removes inactivation in an irreversible, all-or-none manner. The activation pr...
متن کاملEffects of Internal Divalent Cations on Voltage-Clamped Squid Axons
We have studied the effects of internally applied divalent cations on the ionic currents of voltage-clamped squid giant axons. Internal concentrations of calcium up to 10 mM have little, if any, effect on the time-course, voltage dependence, or magnitude of the ionic currents. This is inconsistent with the notion that an increase in the internal calcium concentration produced by an inward calci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 79 شماره
صفحات -
تاریخ انتشار 1982